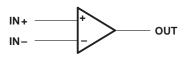
- Very Low Power Consumption
- Power Dissipation With ±2-V Supplies 170 μW Typ
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Input Offset Voltage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- Popular Dual Operational Amplifier Pinout

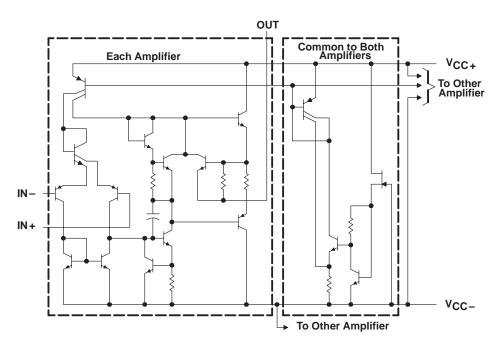

TL022M IS NOT RECOMMENDED FOR NEW DESIGNS

description

The TL022 is a dual low-power operational amplifier designed to replace higher power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use.

TL022M . . . JG PACKAGE TL022C...D OR P PACKAGE (TOP VIEW) 8 🛮 V_{CC} 10UT 7 1 20UT 1IN− 6 🛮 2IN-1IN+ 3 GND 5 1 2IN+ TL022M ... U PACKAGE (TOP VIEW) 10 ∏ NC NC 10UT[] 2 9 VCC+ 8 20UT 1IN−[3 7 2IN-1IN+[] 4 6 1 2IN+ V_{CC} -

symbol (each amplifier)


The TL022C is characterized for operation from 0°C to 70°C. The TL022M is characterized for operation over the full military temperature range of –55°C to 125°C.

AVAILABLE OPTIONS

	Viemay	PACKAGE							
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CERAMIC DIP (JG)	PLASTIC DIP (P)	CERAMIC FLAT PACK (U)				
0°C to 70°C	5 mV	TL022CD	_	TL022CP	_				
-55°C to 125°C	5 mV	_	TL022MJG	_	TL022MU				

The D package is available taped and reeled. Add the suffix R to the device type (i.e. TL022CDR).

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL022C	TL022M	UNIT
Supply voltage, V _{CC+} (see Note 1)	18	22	V	
Supply voltage, V _{CC} – (see Note 1)		-18	-22	V
Differential input voltage (see Note 2)		±30	±30	V
Input voltage (any input, see Notes 1 and 3)		±15	±15	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	
Continuous total dissipation		See Diss	pation Rating	Table
Operating free-air temperature range		0 to 70	-55 to 125	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG or U package		300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package	260		°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- 4. The output may be shorted to ground or either power supply. For the TL022M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING DERATE FACTOR ABOVE T _A		T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	680 mW	5.8 mW/°C	33°C	464 mW	_
JG	680 mW	8.4 mW/°C	69°C	672 mW	210 mW
Р	680 mW	8.0 mW/°C	65°C	640 mW	_
U	675 mW	5.4 mW/°C	25°C	432 mW	135 mW

SLOS076 - SEPTEMBER 1973 - REVISED SEPTEMBER 1990

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC+}	5	15	V
Supply voltage, V _{CC} _	-5	-15	V

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	DADAMETED		TL022C			TL022M			·		
	PARAMETER	TEST CONDITION	TEST CONDITIONS			MAX	MIN	TYP	MAX	UNIT	
\/	land offert veltage	$V_{O} = 0$,	25°C		1	5		1	5	>/	
VIO	Input offset voltage	$R_S = 50 \Omega$	Full range			7.5			6	mV	
li o	Input offset current	V _O = 0	25°C		15	80		5	40	nA	
lio	input onset current	VO = 0	Full range			200			100	IIA	
I _{IB}	Input bias current	V _O = 0	25°C		100	250		50	100	nA	
אוי	input bias current	10-0	Full range			400			250	11/1	
VICR	Common-mode input		25°C	±12	±13		±12	±13		V	
VICR	voltage range		Full range	±12			±12			v	
VO(PP)	Maximum peak-to-peak	$R_L = 10 \text{ k}\Omega$	25°C	20	26		20	26		V	
VO(PP)	output voltage swing	$R_L \ge 10 \text{ k}\Omega$	Full range	20			20				
AVD	Large-signal differential	R _L ≥ 10 kΩ,	25°C	60	80		72	86		dB	
~VD	voltage amplification	V _O = ±10 V	Full range	60			66				
B ₁	Unity-gain bandwidth		25°C		0.5			0.5		MHz	
CMRR	Common-mode rejection	V _{IC} = V _{ICR} min,	25°C	60	72		60	72		dB	
Civilata	ratio	$R_S = 50 \Omega$	Full range	60			60				
ksvs	Supply voltage sensitivity	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V},$	25°C		30	200		30	150	μV/V	
NSVS	(ΔΛΙΟ/ΦΛСС)	$R_S = 50 \Omega$	Full range			200			150	μν/ν	
V _n	Equivalent input noise voltage	$A_{VD} = 20 \text{ dB},$ B = 1 Hz, f = 1 kHz	25°C		50			50		nV/Hz	
los	Short-circuit output current		25°C		±6			±6		mA	
loo	Supply current (both	V _O = 0, No load	25°C		130	250		130	250	Δ	
ICC	amplifiers)	VO = 0, 140 10au	Full range			250			250	μΑ	
PD	Total dissipation	$V_O = 0$, No load	25°C		3.9	7.5		3.9	6	mW	
. ט	(both amplifiers)	140 load	Full range			7.5			6	11177	

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TL022C is 0°C to 70°C and for TL022M is -55°C to 125°C.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS					TYP	MAX	UNIT
t _r	Rise time	Vı = 20 mV.	$R_1 = 10 \text{ k}\Omega$	C 100 pE	Soo Figuro 1		0.3		μs
	Overshoot factor	V = 20 IIIV,	KL = 10 K22,	С[= 100 рг,	See Figure 1		5%		
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF,	See Figure 1		0.5		V/μs

PARAMETER MEASUREMENT INFORMATION

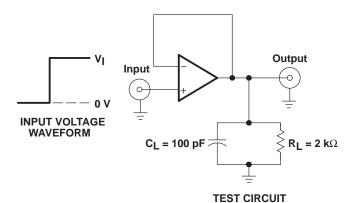


Figure 1. Rise Time, Overshoot Factor, and Slew Rate

TYPICAL CHARACTERISTICS

TOTAL POWER DISSIPATION vs

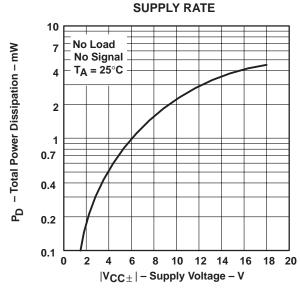


Figure 2

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL022CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL022CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL022CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL022CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL022CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL022CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL022CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL022CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

18-Jul-2006

OBSOLETE: TI has discontinued the production of the device.

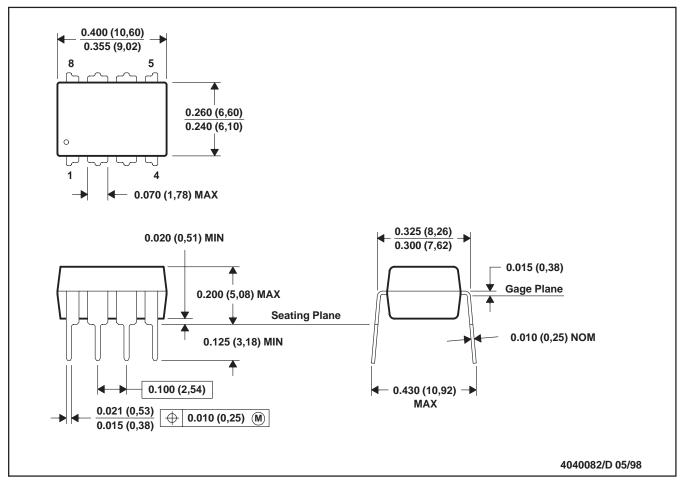
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

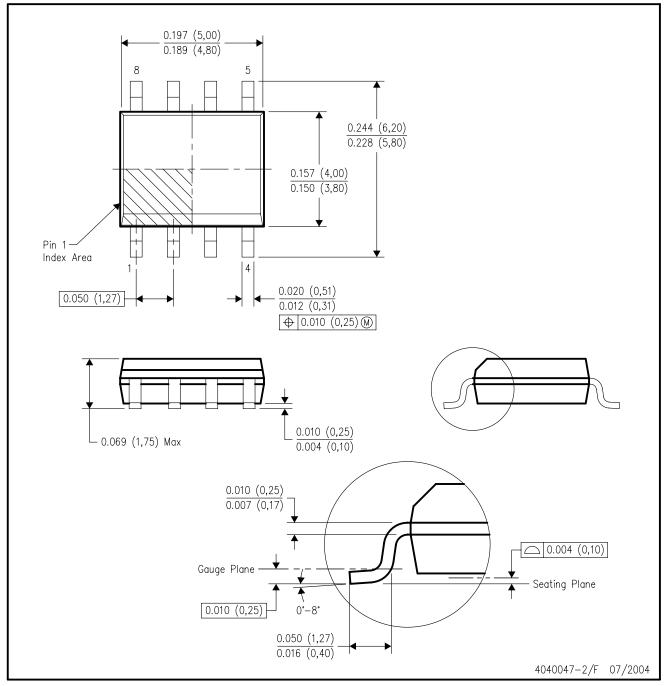

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated