FAIRCHILD
 sEMICロNロபロTロロ
 DM74LS90／DM74LS93
 Decade and Binary Counters

General Description

Each of these monolithic counters contains four master－slave flip－flops and additional gating to provide a divide－by－two counter and a three－stage binary counter for which the count cycle length is divide－by－five for the＇LS90 and divide－by－eight for the＇LS93．
All of these counters have a gated zero reset and the LS90 also has gated set－to－nine inputs for use in BCD nine＇s complement applications．
To use their maximum count length（decade or four bit bi－ nary），the B input is connected to the Q_{A} output．The input
count pulses are applied to input A and the outputs are as described in the appropriate truth table．A symmetrical divide－by－ten count can be obtained from the＇LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide－by－ten square wave at output Q_{A}

Features

－Typical power dissipation 45 mW
－Count frequency 42 MHz

Connection Diagrams（Dual－ln－Line Packages）

Order Number DM74LS90M or DM74LS90N See Package Number M14A or N14A

Order Number DM74LS93M or DM74LS93N See Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage (Reset)	7 V
Input Voltage (A or B)	5.5 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM74LS90			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
l_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 2)	A	15			ns
		B	30			
		Reset	15			
$\mathrm{t}_{\text {w }}$	Pulse Width (Note 3)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 2)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 3)		35			ns
T_{A}			0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS90 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 7) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	

'LS90 Electrical Characteristics (Continued) over recommended operating free air temperature range (unless otherwise noted)							
Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Max}($ Note 5)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}($ Note 4)			9	15	mA
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 6: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded. Note 7: Q_{A} outputs are tested at $I_{\mathrm{OL}}=$ Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.							

'LS90 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$		A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		52	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		60	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32		36	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$		40		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Recommended Operating Conditions

Symbol	Parameter		DM74LS93			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
I_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 8)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 9)	A to Q_{A}	0		20	
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 8)	A	15			ns
		B	30			
		Reset	15			
$t_{\text {w }}$	Pulse Width (Note 9)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 8)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 9)		35			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 8: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 9: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS93 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 10)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \text { (Note 13) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=7 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{IH}	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 11)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 12)			9	15	mA

Note 10: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 11: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 12: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded
Note 13: Q_{A} outputs are tested at $I_{O L}=$ max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS93 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to $Q_{\text {A }}$		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $Q_{\text {A }}$		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		85	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		90	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		60	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Function Tables													
LS90 BCD Count Sequence (Note 14)							LS90 Bi-Quinary (5-2) (Note 15)						
Count		Output					Count	Output					
		Q_{D}	0		Q_{B}	$Q_{\text {A }}$			$\mathrm{Q}_{\mathbf{A}}$	$Q_{\text {D }}$	Q_{C}		$\mathbf{Q}_{\text {B }}$
0		L			L	L	0		L	L	L		L
1		L	L		L	H	1		L	L	L		H
2		L	L		H	L	2		L	L	H		L
3		L	L		H	H	3		L	L	H		H
4		L	H		L	L	4		L	H	L		L
5		L	H		L	H	5		H	L	L		L
6		L			H	L	6		H	L	L		H
7		L			H	H	7		H	L	H		L
8		H			L	L	8		H	L	H		H
9		H			L	H	9		H	H	L		L
LS93 Count Sequence (Note 16)							Note 14: Output Q_{A} is connected to input B for $B C D$ count. Note 15: Output Q_{D} is connected to input A for bi-quinary count. Note 16: Output Q_{A} is connected to input B. Note 17: $\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care.						
Count	Output						LS90 Reset/Count Truth Table						
	$\begin{array}{llll}\mathbf{Q}_{\mathrm{D}} & \mathrm{Q}_{\mathrm{C}} & \mathrm{Q}_{\mathrm{B}} & \mathbf{Q}_{\mathrm{A}}\end{array}$												
0		L	L	L			Reset Inputs				Output		
1	L	L	L	H L			R0(1)	R0(2)	R9(1)	R9(2)	$Q_{\text {D }}$	Q_{c}	Q_{A}
3	L	L	H	H			H	H	L	X	L	L	L
4	L	H	L	L				H	X	L	L	L	L
5	L	H	L	H			X	X	H	H	H	L	H
6	L	H	H	L			X	L	X	L		cou	
7	L	H	H	H			L	x	L	x		cou	
8	H	L	L	L			L	X	X	L		cou	
9	H	L	L	H			X	L	L	x		cou	
10	H	L	H	L									
11	H	L	H	H			LS93						
12	H	H	L	L			Reset	Cou	nt Tr	th Ta	ble		
13	H	H	L				Res	et Inpu			Outp		
14	H H	H H	H H	L			R0(1)	R	R0(2)	\mathbf{Q}_{D}	Q_{C}	Q_{B}	Q_{A}
15				H			H		H	L	L	L	L
							L		X		cou		
							x		L		cou		

Logic Diagrams

The J and K inputs shown without connection are for reference only and are functionally at a high level.
\square

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation	Fairchild Semiconductor Europe	Fairchild Semiconductor Hong Kong Ltd.	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2575631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

