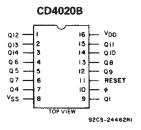


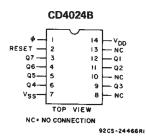
CMOS Ripple-Carry Binary Counter/Dividers

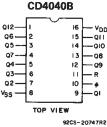
High-Voltage Types (20-Volt Rating)

- CD4020B 14 Stage CD4024B - 7 Stage
- CD4040B 12 Stage

■ CD4020B, CD4024B, and CD4040B are ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of a counter advances one count on the negative transition of each input pulse; a high level on the RESET line resets the counter to its all zeros state. Schmitt trigger action on the input-pulse line permits unlimited rise and fall times. All inputs and outputs are buffered.


The CD4020B and CD4040B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead packages (NSR suffix), and small-outline 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD4040B type also is supplied in 16-lead small-outline packages (M and M96 suffixes).


The CD4024B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).


MAXIMUM RATINGS, Absolute-Maximum Values:

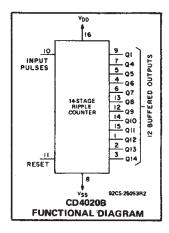
	DC SUPPLY-VOLTAGE RANGE, (VDD)
-0.5V to +20V	Voltages referenced to V _{SS} Terminal)
	INPUT VOLTAGE RANGE, ALL INPUTS
	DC INPUT CURRENT, ANY ONE INPUT
)):	POWER DISSIPATION PER PACKAGE (P
	For $T_A = -55^{\circ}C$ to +100°C
Derate Linearity at 12mW/°C to 200mW	For $T_A = +100^{\circ}C$ to $+125^{\circ}C$
SISTOR	DEVICE DISSIPATION PER OUTPUT TRA
IRE RANGE (All Package Types) 100mW	FOR T _A = FULL PACKAGE-TEMPERAT
	OPERATING-TEMPERATURE RANGE (TA
	STORAGE TEMPERATURE RANGE (Tstg)
	LEAD TEMPERATURE (DURING SOLDER

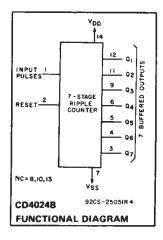
TERMINAL ASSIGNMENTS

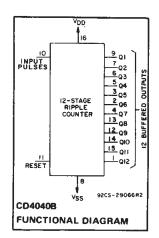
CD4020B, CD4024B, CD4040B Types

Features:

- Medium-speed operation
- Fully static operation
- Buffered inputs and outputs
- 100% tested for guiescent current at 20 V
- Standardized, symmetrical output characteristics
- Fully static operation

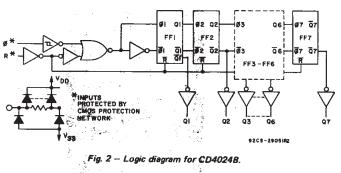

ture range):


- Common reset
- = 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package-tempera-


Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Control counters Frequency dividers Timers
 - Time-delay circuits


CD4020B, CD4024B, CD4040B Types

RECOMMENDED OPERATING CONDITIONS at T_A = 25^{\circ}C, Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	Min.	Max.	UNITS	
Supply Voltage Range (at T _A = Ful Temperature Range)		3	18	v	
Input-Pulse Frequency,	f _φ	5 10 15		3.5 8 12	MHz
Input-Pulse Width,	tw	5 10 15	140 60 40		ns
Input-Pulse Rise or Fall Time,	^t rø ^{, t} fø	5 10 15	Unlim	nited	μs
Reset Pulse Width,	tw	5 10 15	200 80 60	-	ns
Reset Removal Time,	tREM	5 10 15	350 150 100		ns

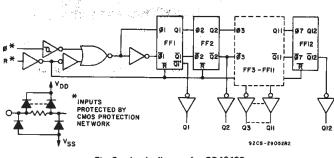


Fig. 3 – Logic diagram for CD4040B.

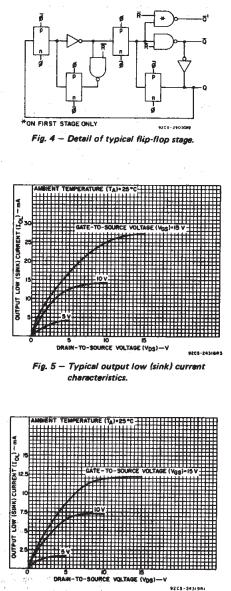
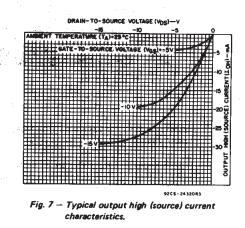
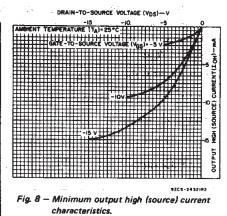



Fig. 6 - Minimum output low (sink) current


characteristics.

 $t \in \{ i \}$

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONE	DITION	15	LIM	ITS AT	INDICA	TED TE	MPERA	TURES	(°C)			
ISTIC	Vo	VIN	VDD					+25					UNITS
	(V)	(V)	(V)	-55	40	+85	+125	Min.	Тур.	Max.			
Quiescent Device		0,5	5	5	5	150	150	÷	0.04	5			
Current,		0,10	10	10	10	300	300	-	0.04	10			
IOD Max.	-	0,15	15	20	20	600	600	-	0.04	20	μΑ		
	1 - - 1 - 1	0,20	20	100	100	3000	3000		0.08	100	1		
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1.	-			
(Sink) Current	0.5	0,10	10	1.6	1,5	.1.1	0.9	1.3	2.6		1		
IOL Min.	1,5	0,15	15	4.2	4	2.8	2.4	34	6.8	- :			
Output High (Source) Current, IOH Min.	4.6	0,5	. 5 -	-0.64	-0.61	-0.42	-0.36	-0.51	. −1	-	mA		
	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	-			
	9.5	0,10	10	-1.6	-1:5	-1.1	-0.9 [.]	-1.3	-2.6	-			
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-			
Output Voltage:		0,5	5		0	.05			0.	0.05			
Low-Level, VOL Max.	-	0,10	10		0	.05		-	0	0.05	-		
	-	0,15	15		0	.05		-	0	0.05			
Output Voltage:	-	0,5	5		4	.95		4.95	5	-			
High-Level,	-	0,10	10		9.95				10	-			
VOH Min.	-	0,15	15	5.	14	.95		14.95	15	-			
Input Low	0.5, 4.5	-	5		1	,5			-	1.5			
Voltage,	1, 9	<u> </u>	10			3		-	—	3			
VIL Max.	1.5,13.5	-	15			4		-	—	4	v		
Input High	0.5, 4.5	_	5	3.5				3.5	— ·		v		
Voltage,	1, 9		10	7				7		-			
VIH Min.	1.5,13.5	'	15			1		11	-	-			
Input Current IIN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μA		

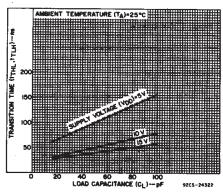
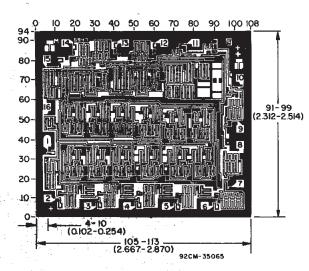
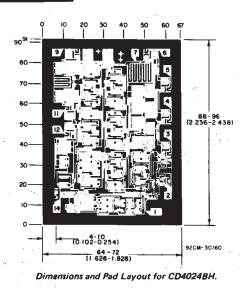
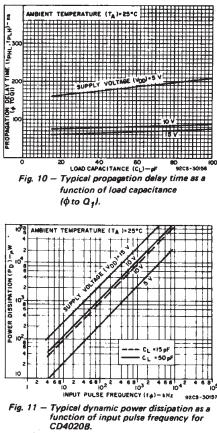




Fig. 9 - Typical transition time as a function of load capacitance.

Dimensions and Ped Layout for CD40208H. Dimensions and ped layout for CD40408H are identical.


Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

and in the second s

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}$ C, Input t_r , $t_f = 20 \text{ ns}$, C_L = 50 pF, R_L = 200 k Ω

				LIMITS	1	
CHARACTERISTIC	TEST CONDITIONS	V _{DD} (V)	Min.	Тур.	Max.	UNITS
Input-Pulse Operation						
Propagation Delay Time, ϕ to		5	-	180	360	
Q1 Out; tPHL, tPLH		10	. - '	80	160	ns
		15	-	65	130	
$0 \pm 0 \pm 1$		5		100	330	
Q _n to Q _n + 1; ^t PHL ^{, t} PLH		10	-	40	80	ns
		15	-	30	60	1
Transition Time,		5	-	100	200	
^t THL ^{, t} TLH		10	-	50	100	ns
		15		40	80	
Minimum Input-Pulse Width, t _W		5		70	140	
		10	_	30	60	ns
		15	-	20	40	
		5				
Input-Pulse Rise or Fall		10	เ	μs		
Time, t _{rø} , t _{fø}		15				
Maximum Input-Pulse		5	3.5	7	-	
Frequency, f _d		10	8	16		MHz
· · · · · · · · · · · · · · · · · · ·		15	12	24	—]
Input Capacitance, C ₁	Any Input		-	5	7.5	p۴
Reset Operation				· · · · · ·		
Propagation Delay		5	_	140	280	
Time, tpHL		10	-	60	120	ns
· ••••		15	-	50	100	
Minimum Reset Pulse		5	_	100	200	
Width, t _W		10	. –	40	80	ns
		15		30	60	
Reset Removal Time,		5		175	350	
^t REM		10	-	75	150	ns
		15	-	50	100	

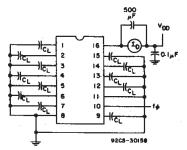
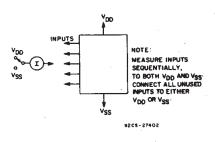



Fig. 12 – Dynamic power dissipation test circuit for CD4020B.

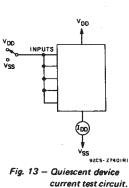


Fig. 14 - Input voltage test circuits.

NOT

92C5-27441R1

TEST ANY COMBINATION OF INPUTS

OUTPUTS

Vpo

Vss

INPUTS

Fig. 15 - Input current test circuit.

3 COMMERCIAL CMOS HIGH VOLTAGE IC8

TEXAS INSTRUMENTS www.ti.com

17-Oct-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
89271AKB3T	OBSOLETE	CFP	WR	16		TBD	Call TI	Call TI
89274AKB3T	OBSOLETE	CFP	WR	16		TBD	Call TI	Call TI
CD4020BE	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4020BF	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD4020BF3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD4020BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4020BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4020BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4020BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4020BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4020BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BE	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4024BEE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4024BF	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
CD4024BF3A	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
CD4024BM	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BM96	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BM96E4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BME4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BMT	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BMTE4	ACTIVE	SOIC	D	14	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BNSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BPWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4024BPWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD4040BE	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4040BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4040BF	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD4040BF3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
CD4040BM	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BM96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BM96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD4040BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
JM38510/05653BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/05655BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited

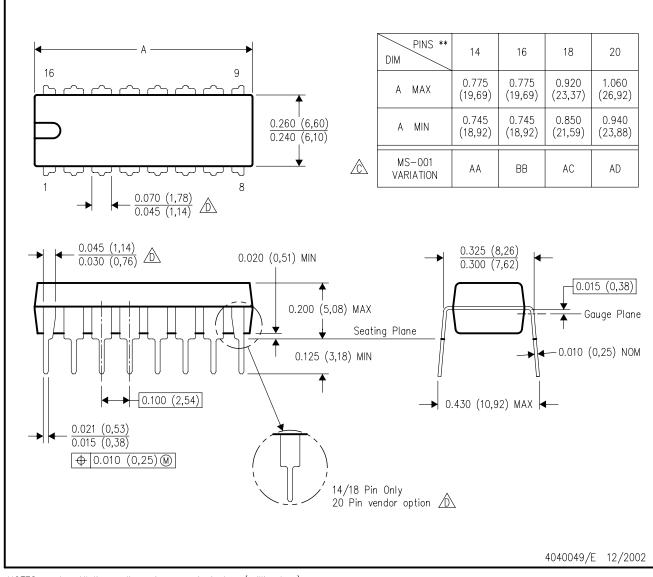
17-Oct-2005

information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

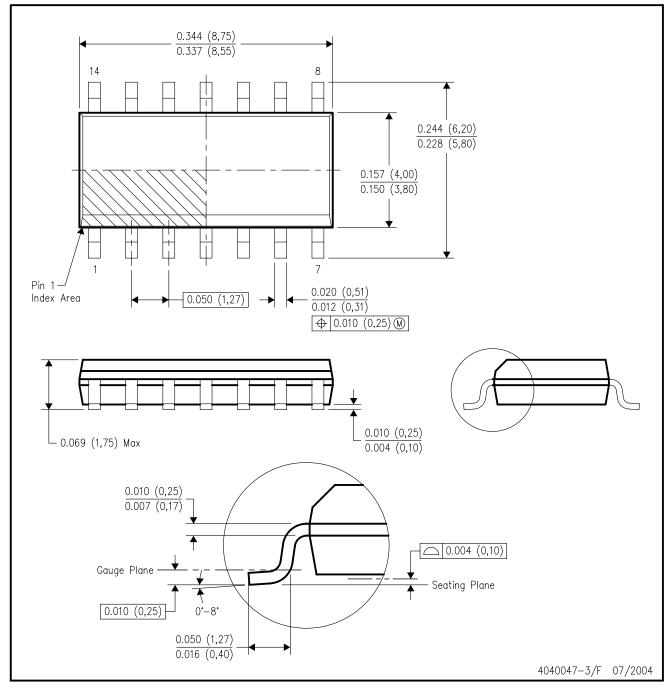

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

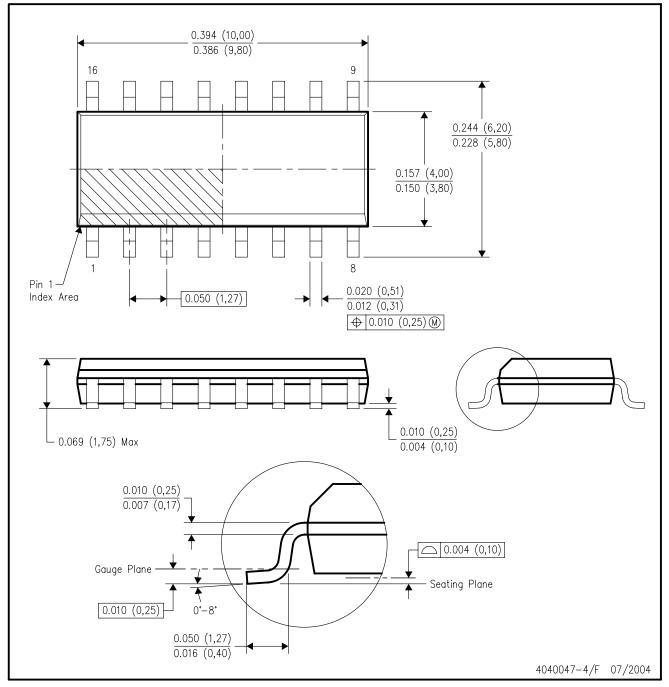
- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

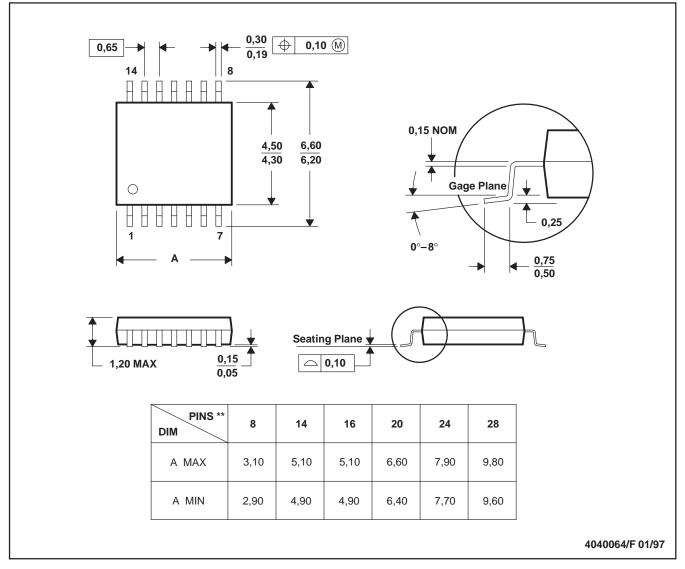
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated